5,873 research outputs found

    The Federal Information Security Management Act of 2002: A Potemkin Village

    Get PDF
    Due to the daunting possibilities of cyberwarfare, and the ease with which cyberattacks may be conducted, the United Nations has warned that the next world war could be initiated through worldwide cyberattacks between countries. In response to the growing threat of cyberwarfare and the increasing importance of information security, Congress passed the Federal Information Security Management Act of 2002 (FISMA). FISMA recognizes the importance of information security to the national economic and security interests of the United States. However, this Note argues that FISMA has failed to significantly bolster information security, primarily because FISMA treats information security as a technological problem and not an economic problem. This Note analyzes existing proposals to incentivize heightened software quality assurance, and proposes a new solution designed to strengthen federal information security in light of the failings of FISMA and the trappings of Congress’s 2001 amendment to the Computer Fraud and Abuse Act

    A New Generating Function for Calculating the Igusa Local Zeta Function

    Get PDF
    A new method is devised for calculating the Igusa local zeta function ZfZ_f of a polynomial f(x1,,xn)f(x_1,\dots,x_n) over a pp-adic field. This involves a new kind of generating function GfG_f that is the projective limit of a family of generating functions, and contains more data than ZfZ_f. This GfG_f resides in an algebra whose structure is naturally compatible with operations on the underlying polynomials, facilitating calculation of local zeta functions. This new technique is used to expand significantly the set of quadratic polynomials whose local zeta functions have been calculated explicitly. Local zeta functions for arbitrary quadratic polynomials over pp-adic fields with pp odd are presented, as well as for polynomials over unramified 22-adic fields of the form Q+LQ+L where QQ is a quadratic form and LL is a linear form where QQ and LL have disjoint variables. For a quadratic form over an arbitrary pp-adic field with odd pp, this new technique makes clear precisely which of the three candidate poles are actual poles.Comment: 54 page

    Particle Astrophysics and Cosmology: Cosmic Laboratories for New Physics (Summary of the Snowmass 2001 P4 Working Group)

    Full text link
    The past few years have seen dramatic breakthroughs and spectacular and puzzling discoveries in astrophysics and cosmology. In many cases, the new observations can only be explained with the introduction of new fundamental physics. Here we summarize some of these recent advances. We then describe several problem in astrophysics and cosmology, ripe for major advances, whose resolution will likely require new physics.Comment: 27 pages, 14 figure

    Short-Term Memory in Orthogonal Neural Networks

    Full text link
    We study the ability of linear recurrent networks obeying discrete time dynamics to store long temporal sequences that are retrievable from the instantaneous state of the network. We calculate this temporal memory capacity for both distributed shift register and random orthogonal connectivity matrices. We show that the memory capacity of these networks scales with system size.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let

    Imprint of Inhomogeneous Reionization on the Power Spectrum of Galaxy Surveys at High Redshifts

    Full text link
    We consider the effects of inhomogeneous reionization on the distribution of galaxies at high redshifts. Modulation of the formation process of the ionizing sources by large scale density modes makes reionization inhomogeneous and introduces a spread to the reionization times of different regions with the same size. After sources photo-ionize and heat these regions to a temperature \ga 10^4K at different times, their temperatures evolve as the ionized intergalactic medium (IGM) expands. The varying IGM temperature makes the minimum mass of galaxies spatially non-uniform with a fluctuation amplitude that increases towards small scales. These scale-dependent fluctuations modify the shape of the power spectrum of low-mass galaxies at high redshifts in a way that depends on the history of reionization. The resulting distortion of the primordial power spectrum is significantly larger than changes associated with uncertainties in the inflationary parameters, such as the spectral index of the scalar power spectrum or the running of the spectral index. Future surveys of high-redshift galaxies will offer a new probe of the thermal history of the IGM but might have a more limited scope in constraining inflation.Comment: 8 pages, 5 figures, replaced to match version accepted by Ap

    Fibrous-Ceramic/Aerogel Composite Insulating Tiles

    Get PDF
    Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at normal atmospheric pressure is not much greater than that of the fibrous ceramic alone in a vacuum

    The Physical Parameters of the Retired A Star HD185351

    Full text link
    We report here an analysis of the physical stellar parameters of the giant star HD185351 using Kepler short-cadence photometry, optical and near infrared interferometry from CHARA, and high-resolution spectroscopy. Asteroseismic oscillations detected in the Kepler short-cadence photometry combined with an effective temperature calculated from the interferometric angular diameter and bolometric flux yield a mean density, rho_star = 0.0130 +- 0.0003 rho_sun and surface gravity, logg = 3.280 +- 0.011. Combining the gravity and density we find Rstar = 5.35 +- 0.20 Rsun and Mstar = 1.99 +- 0.23 Msun. The trigonometric parallax and CHARA angular diameter give a radius Rstar = 4.97 +- 0.07 Rsun. This smaller radius,when combined with the mean stellar density, corresponds to a stellar mass Mstar = 1.60 +- 0.08 Msun, which is smaller than the asteroseismic mass by 1.6-sigma. We find that a larger mass is supported by the observation of mixed modes in our high-precision photometry, the spacing of which is consistent only for Mstar =~ 1.8 Msun. Our various and independent mass measurements can be compared to the mass measured from interpolating the spectroscopic parameters onto stellar evolution models, which yields a model-based mass M_star = 1.87 +- 0.07 Msun. This mass agrees well with the asteroseismic value,but is 2.6-sigma higher than the mass from the combination of asteroseismology and interferometry. The discrepancy motivates future studies with a larger sample of giant stars. However, all of our mass measurements are consistent with HD185351 having a mass in excess of 1.5 Msun.Comment: ApJ accepte
    corecore